一.科学性
1.研究意义
信息科技经过 60 余年的发展,已经普及到社会生活的每一个角落。随着信息技术在国家治理、经济运行的方方面面的应用,大量的数据随之产生。而互联网技术的爆发式发展使得近年来产生的数据总量超过了人类以往产生的历史数据的总和,医疗行业的数据增长幅度尤为突出。
医疗大数据具有巨大的价值,尤其是在临床辅助诊疗和健康管理方面。医疗大数据已经上升到国家战略,同时也是全球学术界与产业界竞争的研究热点。如何利用这些医疗数据,挖掘数据的深层价值,是未来信息科技发展的趋势,也是医疗大数据技术产生的背景。
本项目利用知识图谱将各种琐碎、零散的医疗信息知识相互连接,以支持综合型知识检索问答、辅助决策和智能医疗诊断。精准医学知识与大数据相结合,能够利用庞大的全人类对疾病的理解和医生的经验形成知识库,让医生能够通过大数据的信息系统直接根据病人的个体实际情况来对他们进行针对性的诊断和治疗,辅助医生的诊疗过程,使得普通医生也能够像最好的资深医生一样为病人提供高质量的诊疗服务。
本项目结合知识图谱和医疗大数据技术,可以帮助患者自我评估病情,帮助医生找到最佳治疗方案,提高医生工作效率和诊疗质量,为慢病患者提供远程指导和干预。
2.医疗大数据的爬取与存储
(1) 利用互联网搜寻可靠、权威的医疗数据来源,按照疾病所属科室利用多线程技术分段爬取全部数据,保证涵盖全部疾病内容,并在数据爬取过程中,分析数据结构,包括科室、症状、病因、并发症、治疗、预防等。
(2) 针对爬取的数据进行分词,用于后续算法设计,最后将全部数据结构化存储至本地 MySQL 数据库。
(3) 利用 Elastic Search 数据库快速地储存、搜索和分析海量数据。将MySQL 中存储的数据抽取部分部分存入到 Elastic Search 数据库,然后开发相应接口,返回JSON 格式的数据。ES 数据库的主要功能:一是用户在输入框输入症状词时提供实时搜索结果;二是点击部位时搜索到全部相关症状。
(4) 使用 Neo4j 图形数据库存储一部分结构化的数据,便于进行算法设计,搭配分词、检索、排除、统计等算法提升诊断正确率。
|
|