第一节 现状和需求分析
名称 PACS RIS B超 内镜 病理 体检
操作系统
容量大小
数据库类型
主机类型
是否有存储 无
是否有备份 无
硬件平台需求分析:
1、院方影像科会有多少台应用服务器(PACS、RIS、B超,体检,内镜等)?是单机还是双机运行?从业务连续性方面考虑,若其中某台服务器因故障宕机,是否会造成该应用的中断,从而影响院方的正常工作流程?
2、数据是否分散?对于各个应用系统的数据是否都需要集中存储和管理?
3、影像工作站有多少台?最大的并发访问量会有多大?每天采纳标准压缩算法压缩后的图像文件大概增量是多大?
需求目标:1、建设全院级PACS系统的数据存储平台(本期)。
2、考虑数据的备份、HIS系统与PACS系统的容灾(后期)。
第二节 影像存储架构分析
一、 PACS中的存储
PACS(Picture Archiving Communication System)是近年来随着数字成像技术、计算机技术和网络技术的进步而迅速发展起来的,旨在全面解决医学图像的获取、显示、存贮、传送和管理的综合系统。它与医院信息系统其它部分的最显著差异,就是其数据量的巨大。因此,如何存储其海量数据是PACS规划设计的关键,关系到PACS运行的整体性能、容错能力和可伸缩性。在规划PACS存储方案时,要根据网络条件、数据流量和用户分布情况,采用不同的存储策略。
二、存储架构分析
FC-SAN与IP-SAN详细技术比较
1) 连接拓扑结构比较
在FC-SAN 中存在着其灵活的连接方式,可根据不通的应用需求而选择不同的连接拓扑,其主要连接方式有如下三种:
点对点:首先各个组成设备通过登陆建立初始连接,然后即采用全带宽进行工作,其实际的链路利用率为每个终端的光纤通道控制器以及发送与接收数据可获得缓冲区大小来决定。但其只适用于小规模存储设备的方案,不具备共享功能。
仲裁环:允许两台以上的设备通过一个共享带宽进行通信与交流,在此拓扑结构中,任意一个进程的创建者在发送一段报文之前,都将首先与传输介质就如何存取信息达成协议,因此所有设备均能通过仲裁协议实现对通信介质的有序访问。
全交换:通过链路层交换提供及时、多路的点对点的连接。通过专用、高性能的光纤通道交换机进行连接,同时可进行多对设备之间点对点的通信,从而使整个系统的总带宽随设备的增多而相应增大,在增多的同时丝毫不影响这个系统的性能。
在IP-SAN 中基于以太网的数据传输与存取中,虽然在物理上可体现为总线或者星型连接,但其实质为带冲突检测多路载波侦听(CSMA/CD)方式进行广播式数据传输的总线拓扑,因此随着负载以及网络中通信客户端的增加,其实际效率会随着相应的降低。
2) 网络设备及传输介质比较
FC-SAN:使用专用光纤通道设备
在链路中使用光纤介质,不仅完全可以避免因传输过程中各种电磁干扰,而且可以有效达到远距离的I/O通道连接。在FC-SAN 中所使用的核心交换设备——光纤交换机均带具有高可靠性及高性能的ASIC芯片设计,使整个处理过程完全基于硬件级别的高效处理。同样在连接至主机的HBA设计中,绝大多数操作独立处理,完全不耗费主机处理资源。
IP-SAN:使用通用的IP网络及设备
在传输介质中使用铜缆、双绞线、光纤等介质进行信号的传输,但在普通的廉价介质存在信号衰减严重等缺点,而使用光纤也同样需要特有的光电转换设备等。在IP网络中,可借助IP路由器进行传输,但根据其距离远近,会产生相应的传输延迟。核心层使用各种性能的网络交换机,受传输协议本身的限制,其实际处理效率不高。在主机端通常使用廉价的各种速率的网卡,存在大量耗费主机的应用处理资源问题。
总之,在进行大数据量的信息存储传输与处理中,光纤通道性能有着网络在现阶段无法比拟的优势。
3) 存储能够响应的并发操作能力比较
从应用上来说,相对于IP-SAN,FC-SAN可以承接更多的并发访问用户数。当并发访问Storage的用户数不多的情况时,FC-SAN对比IP-SAN二者性能相差无几。但一旦当外接用户数呈大规模增长趋势时,FC-SAN就显示出其在稳定、安全、以及高性能传输率等方面的优势,不会像IP-SAN由于自身传输带宽的瓶颈而导致整个系统的被拖垮。面对大规模并发访问,无论是从外接用户数规模来说还是从传输性能和稳定性来说,FC-SAN都有着IP-SAN不可比拟的优势。
4) 存储区域网中设备稳定性比较
FC-SAN 由于使用高效的光纤通道协议,因此大部分功能都基于硬件来实现的,如后端存储子系统的存储虚拟通过带有高性能处理器的专用RAID 控制器来实现,中间的数据交换层通过专用的高性能ASIC来进行基于硬件级的交换处理,在主机端通过带有ASIC 芯片的专用HBA 来进行数据信息的处理。因此在大量减少主机处理开销的同时,也大大提高了整个FC-SAN的稳定性。
IP-SAN 使用通用的IP 协议,而所有的协议转换及处理时,绝大部分依赖于软件来实现,而软件的不稳定性因素也随软件的复杂度的增加而呈指数级增加,从而在大型的网络中,整个系统的稳定性也会随之降低。
5) 存储区域网的可扩展性比较
在全交换(FC-SW Fibre Channel switch fabric)的FC-SAN 中,各通信终端通过FC端口登陆后来进行数据的传输与处理,而每个端口会提供专用的24位的FC端口地址(WWN)来进行数据通信,根据其地址分配策略,在FC-SW中FC-SAN实际可用的地址值达到1550 万,因此在实际的企业级应用中,完全可以满足任何规模的存储网络的建立。
同时在FC 网络中,由于所有的介质均选用光媒质来进行传输,所以其设备均具有热插拔的能力,因此不管在已有的或者新建立的FC-SAN 网络里可在线完全非中断应用的情况下对现有的FC-SAN 网络进行扩展,如增加新的服务器、增加新的存储空间等等,并且完全不影响已有系统的性能。
在IP-SAN中,由于借助原有的IP网络,因此在其网络连接拓扑也同样具有好的可扩展性。但在使用IP 存储时,由于通常使用了专有的存储虚拟软件,所有的存储分配与虚拟均通过软件来实现,所以在进行存储的扩展时,很大程度取决于存储虚拟软件的设计性能以及架构等等。
6) 存储区域网的可靠性比较
FC-SAN的设计初衷是基于企业级的核心数据以及应用而设计的,因此在其兴起、发展直至成熟,对整个系统的可靠性均有着很高的要求。在整个系统中,除了本身系统即基于高靠的环境中外,所有设备均采用高可靠性的硬件及芯片来设计,并且系统的核心部件以及相关的所有链路等均可采用热插拔双冗余的设计,如存储子系统的冗余控制器、冗余电源等;链路可采用多路径冗余或者负载均衡等等。另大部分设计是基于硬件的,所以方便使用高可靠、高性能的嵌入式系统来进行数据的处理。
IP-SAN 本身即基于不可靠的IP 网络,因此其可靠性必须在已有的软件中增加其可靠性的设计,如增加冗余的功能、提供HA 模式等等。因为是基于软件设计的,因此在功能上会有所丰富的表现,但其可靠性也同样是基于软件的复杂度的增加而降低,同时也可能会引起性能下降的副作用。
扫码立享400积分
|
|